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We use spherically converging shock 
waves to reach high pressures >10 Tpa (100Mbar)	  
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We use spherically converging shock 
waves to reach high pressures >10 Tpa (100Mbar)	  

Solid CD2 
sphere 

Zn or Ge 
backlighter!
(4 quads)!

0

50

100

150

200

250

300

350

0

10

20

-2 0 2 4 6 8 10 12

Laser pulse shapes for F_Gbar_Gbar_AAA

inner (TW)

total (TW)

outer (TW)

Backlighter (TW)

L
as

er
 P

o
w

er
 (

T
W

)

B
acklig

h
ter B

eam
s (T

W
)

Time (ns)

Laser  
pulse 

shapes 

Time (ns) 

P
ow

er
 (T

W
) 

 
Streaked Radiography 

N140929 

radius (mm) 

Ti
m

e 
(n

s)
 

6 

4 

8 

10 

2 
0 0.5 0.5 1.0 1.0 

Self 
emission 

Fiducial wire 

Shock !
Front!

N140928 

  
marker layer 

shock !
front!

Self- 
emission 

Brown dwarf 

Sun 

10 

100 

1000 

P
re

ss
ur

e 
(T

P
a)

 

2 



LLNL-PRES-xxxxxx 

Shocked	  Solid	  Spheres	  are	  Hydrodynamically	  Stable,	  Unlike	  
Imploding	  Capsules 

Capsule implosions 
are prone to 
Hydrodynamic 
instabilities at each 
interface 

Converging 
shockwaves are 
self-symmetrizing 

Shock wave 
Ø  The shock wave keeps 

‘forgetting’ about past 
conditions: it is undergoing 
a damped oscillation 

Ø  We have a self-similar 
system 

SOLID SPHERE CAPSULE 
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What	  happens	  in	  the	  center? 

Self-Similar Solution for Density, Temperature and Pressure 

before stagnation 
after stagnation 
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⇒  Convergence and reflected shock enhance ρ, T and P 
Where does this break down in a real implosion? 
What will limit the size and burn duration of the observable hotspot? 

see also Guderley, 1942 and 
 Atzeni & Meyer-Ter-Vehn: The Physics of Inertial Fusion 
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Self	  similar	  solu/on	  for	  imploding	  shock	  wave	  has	  2	  “knobs”	  that	  
constrain	  the	  physics 

ρ => γ	


Ø  A small change in γ 
results in a large change 
in the final density/
compressibility 

Ø  A small change in ξ 
results in a large change 
of the Neutron yield 

⇒  Measuring the density & Neutron yield strongly 
constrains γ and ξ, thus the Equation of State 

-  γ: adiabatic index 
-  ξ: shock strength parameter, 
 

ξ =
r / r0
t / t0

a

YN => ξ	


Observables are consistent with self-
similar solution 
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Shocked	  Solid	  Spheres	  are	  Hydrodynamically	  Stable,	  Unlike	  
Imploding	  Capsules 
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Shocked	  Solid	  Spheres	  are	  Hydrodynamically	  Stable,	  Unlike	  
Imploding	  Capsules 
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Shocked	  Solid	  Spheres	  are	  Hydrodynamically	  Stable,	  Unlike	  
Imploding	  Capsules 

CD2 
sphere ⇒  Hotspot shape 
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(10µm (1/e) radius) with the 
highest resolution (1.5µm) on 
the NIF to date 

Bachmann et al., RSI 85, 11D614, 2014  
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Shocked	  Solid	  Spheres	  are	  Hydrodynamically	  Stable,	  Unlike	  
Imploding	  Capsules	  –	  ADD	  RESULTS	  tau,	  R,	  T,	  YN 

Doppler-broadened Neutron 
time-of-flight signal 

CD2 
sphere ⇒  Hotspot shape 
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Calcula/on	  of	  the	  Hotspot	  Density 

YN = 1.5 e9 (25% of total, from nTOF) 
R(17%) = 13.2 µm (from Penumbral Imaging) 
t=30ps (x-ray burn width) 
Tmean = 1.6 keV (from self-emission meas.) 

Yn,DD =
nD
2

2Vhs

∫
0

∞

∫ σ v
DD
dVdt

⇒  nCD2,m = 43 g/cc 

YN = 7e9 (total, from nTOF) 
R(17%) = 40 µm (from Guderley model) 
t = 47 ps (Neutron burn width – from Guderley) 
Tmean= 1.0 keV (from nTOF) 

⇒  nCD2,m = 45 g/cc 

•  Small change in γ results in 
large change of density 

•  Small change in shock 
strength results in large 
change of Neutron yield 

⇒  Measuring density & 
neutron yield strongly 
constrains the  
Equation of State 
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We	  Constrain	  the	  Equa/on	  of	  State	  of	  CD2	  at	  Unprecedented	  
Condi/ons 

Γ=	
 coulomb energy 
kinetic energy  

χ=	
 Interatomic spacing 
DeBroglie Wavelength 

ζ=	
 Interatomic spacing 
Bohr radius 

θ=	
 Thermal Energy                                  
Fermi Energy 

YX=50%: Contour containing 50% of 
the measured x-ray yield (from self-
similar solution) 

YN=50%: Contour containing 50% of 
the measured neutron yield (from 
self-similar solution) 

Phase Diagram of CD2 
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Can	  we	  Es/mate	  the	  Pressure? 

cs =
K
ρ
≅

γP
ρ

X-ray burn width: 30-40 ps 
X-ray emission radius: 13 µm 
⇒  Characteristic velocity (close to 

sound speed): 13µm/35ps=370km/s 
⇒  Compare Ion sound velocity:  

⇒  e-i equilibration time constant: 200 fs 

cs,ion = γZkBT /mion = 345km / s

Comparison of measured and  expected 
(self-similar model) self-emission 

⇒  Hotspot burn is limited by 
Hydrodynamic time scale 

⇒  P~3.4…3.9 
PPa (34 to 
39 Gbar) 
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Hotspot	  State	  Variables	  Agree	  Well	  with	  Purgatorio	  EOS 

For the first time, nuclear reac-
tions have been used to cons-
train the Equation of State of 
matter at solar core conditions 

Purgatorio EOS surface (CD2) and hotspot state 
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C: maximum com-
pressibility in a self-
similar implosion 

Purgatorio 
EOS surface 




